5: Matrix Transformations as Functions

Matrix Transformations

(Linear Transformation)

A matrix transformation (or linear transformation) is a function T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m defined by:

T(x)=AxT(\mathbf{x}) = A\mathbf{x}

where AA is an m×nm \times n matrix.

Key Properties:

  1. T(u+v)=T(u)+T(v)T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) (preserves addition)
  2. T(cv)=cT(v)T(c\mathbf{v}) = cT(\mathbf{v}) (preserves scalar multiplication)

These properties mean T(c1v1+c2v2)=c1T(v1)+c2T(v2)T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) for any scalars and vectors.


Viewing Transformations as Functions

When we write T(x)=AxT(\mathbf{x}) = A\mathbf{x}, we’re treating matrix multiplication as a function:

  • Domain: Rn\mathbb{R}^n (all possible input vectors)
  • Codomain: Rm\mathbb{R}^m (the space where outputs live)
  • Range (Image): {yRmy=Ax for some x}\{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x}\}

The range is the set of all possible outputs,it’s the column space of AA.

Range(T)=Col(A)=span{columns of A}\text{Range}(T) = \text{Col}(A) = \text{span}\{\text{columns of } A\}

Injectivity (One-to-One)

(Injective / One-to-One)

A transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m is injective (one-to-one) if:

T(x1)=T(x2)    x1=x2T(\mathbf{x}_1) = T(\mathbf{x}_2) \implies \mathbf{x}_1 = \mathbf{x}_2

Equivalently: Different inputs produce different outputs.

Equivalently: T(x)=0T(\mathbf{x}) = \mathbf{0} has only the trivial solution x=0\mathbf{x} = \mathbf{0}.


(Testing for Injectivity)

For T(x)=AxT(\mathbf{x}) = A\mathbf{x} where AA is m×nm \times n:

T is injective    Ax=0 has only the trivial solutionT \text{ is injective} \iff A\mathbf{x} = \mathbf{0} \text{ has only the trivial solution}

Equivalently:

  • The columns of AA are linearly independent
  • Nul(A)={0}\text{Nul}(A) = \{\mathbf{0}\} (null space contains only zero vector)
  • rref(A)\text{rref}(A) has a pivot in every column
  • rank(A)=n\text{rank}(A) = n (number of columns)

Geometric Intuition: Injective transformations don’t “collapse” dimensions,they preserve distinctness.


Example: Testing Injectivity

Is T(x)=[123601]xT(\mathbf{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 0 & 1 \end{bmatrix}\mathbf{x} injective?

Solution: Check if Ax=0A\mathbf{x} = \mathbf{0} has only the trivial solution:

[123601][100100]\begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}

Pivot in every column → Yes, injective.


Surjectivity (Onto)

(Surjective / Onto)

A transformation T:RnRmT: \mathbb{R}^n \to \mathbb{R}^m is surjective (onto) if:

Range(T)=Rm\text{Range}(T) = \mathbb{R}^m

Equivalently: For every bRm\mathbf{b} \in \mathbb{R}^m, there exists some xRn\mathbf{x} \in \mathbb{R}^n such that T(x)=bT(\mathbf{x}) = \mathbf{b}.

Equivalently: Every vector in the codomain is “hit” by some input.


(Testing for Surjectivity)

For T(x)=AxT(\mathbf{x}) = A\mathbf{x} where AA is m×nm \times n:

T is surjective    Ax=b has a solution for every bRmT \text{ is surjective} \iff A\mathbf{x} = \mathbf{b} \text{ has a solution for every } \mathbf{b} \in \mathbb{R}^m

Equivalently:

  • The columns of AA span Rm\mathbb{R}^m
  • Col(A)=Rm\text{Col}(A) = \mathbb{R}^m
  • rref(A)\text{rref}(A) has a pivot in every row
  • rank(A)=m\text{rank}(A) = m (number of rows)

Geometric Intuition: Surjective transformations “cover” the entire codomain,no gaps.


Example: Testing Surjectivity

Is T(x)=[120361]xT(\mathbf{x}) = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 1 \end{bmatrix}\mathbf{x} surjective (as a map R3R2\mathbb{R}^3 \to \mathbb{R}^2)?

Solution: Check if rref has a pivot in every row:

[120361][120001]\begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Pivot in every row → Yes, surjective.


Bijectivity (One-to-One and Onto)

(Bijective)

A transformation is bijective if it is both injective and surjective.

Properties of Bijections:

  1. Every output has exactly one input that produces it
  2. The transformation is invertible (has an inverse function T1T^{-1})
  3. TT establishes a perfect “pairing” between domain and codomain

(When is a Matrix Transformation Bijective?)

For T(x)=AxT(\mathbf{x}) = A\mathbf{x}:

T is bijective    A is square and invertibleT \text{ is bijective} \iff A \text{ is square and invertible}

Equivalently:

  • AA is an n×nn \times n matrix with rank(A)=n\text{rank}(A) = n
  • rref(A)=In\text{rref}(A) = I_n (the identity matrix)
  • det(A)0\det(A) \neq 0
  • Columns of AA form a basis for Rn\mathbb{R}^n

Note: For non-square matrices:

  • If m<nm < n (more columns than rows), TT cannot be injective
  • If m>nm > n (more rows than columns), TT cannot be surjective

Example: Bijective Transformation

Is T(x)=[1237]xT(\mathbf{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}\mathbf{x} bijective (R2R2\mathbb{R}^2 \to \mathbb{R}^2)?

Solution: Check if AA is invertible:

rref[1237]=[1001]\text{rref}\begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Identity matrix → Yes, bijective (and AA has an inverse).


Summary Table

PropertyCondition on AA (m×nm \times n)Geometric Meaning
InjectivePivot in every columnNo dimension collapse
SurjectivePivot in every rowCovers entire codomain
BijectiveSquare + invertible (m=nm = n, full rank)Perfect correspondence

Connecting to Linear Systems

Given T(x)=AxT(\mathbf{x}) = A\mathbf{x}:

  1. InjectiveAx=bA\mathbf{x} = \mathbf{b} has at most one solution for any b\mathbf{b}
  2. SurjectiveAx=bA\mathbf{x} = \mathbf{b} has at least one solution for any b\mathbf{b}
  3. BijectiveAx=bA\mathbf{x} = \mathbf{b} has exactly one solution for any b\mathbf{b}

Visual Intuition

Injective but not Surjective

R2A3×2R3\mathbb{R}^2 \xrightarrow{A_{3 \times 2}} \mathbb{R}^3

Imagine embedding a plane into 3D space,points don’t overlap (injective), but not all of 3D is covered (not surjective).

Surjective but not Injective

R3A2×3R2\mathbb{R}^3 \xrightarrow{A_{2 \times 3}} \mathbb{R}^2

Imagine projecting 3D onto a plane,every point on the plane is hit (surjective), but many 3D points map to the same plane point (not injective).

Bijective

RnAn×nRn\mathbb{R}^n \xrightarrow{A_{n \times n}} \mathbb{R}^n

A rotation, reflection, or scaling in Rn\mathbb{R}^n,every point has a unique pre-image and every point is reached.