5: Integral Calculus of Several Variables
Double and triple integrals for computing volumes, masses, and other quantities.
Double Integrals
Definition
∬Rf(x,y)dA=n→∞limi=1∑nf(xi∗,yi∗)ΔAi
Iterated Integrals
Over a rectangle R=[a,b]×[c,d]:
∬Rf(x,y)dA=∫ab∫cdf(x,y)dydx=∫cd∫abf(x,y)dxdy
Fubini’s Theorem: Order doesn’t matter if f is continuous.
General Regions
Type I (bounded by y=g1(x) and y=g2(x)):
∬Df(x,y)dA=∫ab∫g1(x)g2(x)f(x,y)dydx
Type II (bounded by x=h1(y) and x=h2(y)):
∬Df(x,y)dA=∫cd∫h1(y)h2(y)f(x,y)dxdy
Applications of Double Integrals
Area
A=∬D1dA
Volume Under Surface
V=∬Df(x,y)dA
Mass and Center of Mass
For density ρ(x,y):
Mass: m=∬Dρ(x,y)dA
Center of mass:
xˉ=m1∬Dxρ(x,y)dA,yˉ=m1∬Dyρ(x,y)dA
Moments of Inertia
Ix=∬Dy2ρdA,Iy=∬Dx2ρdA,I0=∬D(x2+y2)ρdA
Double Integrals in Polar Coordinates
When the region is circular or the integrand involves x2+y2:
∬Rf(x,y)dA=∬Rf(rcosθ,rsinθ)rdrdθ
Key: dA=rdrdθ (not just drdθ!)
Example: Disk of radius a
∬DfdA=∫02π∫0af(rcosθ,rsinθ)rdrdθ
Triple Integrals
∭Ef(x,y,z)dV
∭EfdV=∫ab∫g1(x)g2(x)∫h1(x,y)h2(x,y)f(x,y,z)dzdydx
Applications
Volume: V=∭E1dV
Mass: m=∭Eρ(x,y,z)dV
Center of mass: xˉ=m1∭ExρdV, etc.
Cylindrical Coordinates
x=rcosθ,y=rsinθ,z=z
Volume element: dV=rdzdrdθ
Use when: Region has circular symmetry about the z-axis.
Example: Cylinder
∭EfdV=∫02π∫0a∫0hf(rcosθ,rsinθ,z)rdzdrdθ
Spherical Coordinates
x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕ
where:
- ρ = distance from origin
- ϕ = angle from positive z-axis (0≤ϕ≤π)
- θ = angle in xy-plane from positive x-axis
Volume element: dV=ρ2sinϕdρdϕdθ
Use when: Region has spherical symmetry.
Example: Sphere of radius a
∭EfdV=∫02π∫0π∫0afρ2sinϕdρdϕdθ
Change of Variables (Jacobian)
For transformation x=g(u,v), y=h(u,v):
∬Rf(x,y)dxdy=∬Sf(g(u,v),h(u,v))∂(u,v)∂(x,y)dudv
Jacobian:
∂(u,v)∂(x,y)=∂u∂x∂u∂y∂v∂x∂v∂y
Common Jacobians
| Coordinates | Jacobian |
|---|
| Polar | r |
| Cylindrical | r |
| Spherical | ρ2sinϕ |
Summary
| Coordinate System | dA or dV |
|---|
| Cartesian 2D | dxdy |
| Polar | rdrdθ |
| Cartesian 3D | dxdydz |
| Cylindrical | rdzdrdθ |
| Spherical | ρ2sinϕdρdϕdθ |