| |

5: Integral Calculus of Several Variables

Double and triple integrals for computing volumes, masses, and other quantities.


Double Integrals

Definition

Rf(x,y)dA=limni=1nf(xi,yi)ΔAi\iint_R f(x, y) \, dA = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta A_i

Iterated Integrals

Over a rectangle R=[a,b]×[c,d]R = [a, b] \times [c, d]:

Rf(x,y)dA=abcdf(x,y)dydx=cdabf(x,y)dxdy\iint_R f(x, y) \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy

Fubini’s Theorem: Order doesn’t matter if ff is continuous.

General Regions

Type I (bounded by y=g1(x)y = g_1(x) and y=g2(x)y = g_2(x)):

Df(x,y)dA=abg1(x)g2(x)f(x,y)dydx\iint_D f(x, y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx

Type II (bounded by x=h1(y)x = h_1(y) and x=h2(y)x = h_2(y)):

Df(x,y)dA=cdh1(y)h2(y)f(x,y)dxdy\iint_D f(x, y) \, dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy

Applications of Double Integrals

Area

A=D1dAA = \iint_D 1 \, dA

Volume Under Surface

V=Df(x,y)dAV = \iint_D f(x, y) \, dA

Mass and Center of Mass

For density ρ(x,y)\rho(x, y):

Mass: m=Dρ(x,y)dAm = \iint_D \rho(x, y) \, dA

Center of mass:

xˉ=1mDxρ(x,y)dA,yˉ=1mDyρ(x,y)dA\bar{x} = \frac{1}{m}\iint_D x\rho(x, y) \, dA, \quad \bar{y} = \frac{1}{m}\iint_D y\rho(x, y) \, dA

Moments of Inertia

Ix=Dy2ρdA,Iy=Dx2ρdA,I0=D(x2+y2)ρdAI_x = \iint_D y^2 \rho \, dA, \quad I_y = \iint_D x^2 \rho \, dA, \quad I_0 = \iint_D (x^2 + y^2) \rho \, dA

Double Integrals in Polar Coordinates

When the region is circular or the integrand involves x2+y2x^2 + y^2:

Rf(x,y)dA=Rf(rcosθ,rsinθ)rdrdθ\iint_R f(x, y) \, dA = \iint_R f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta

Key: dA=rdrdθdA = r \, dr \, d\theta (not just drdθdr \, d\theta!)

Example: Disk of radius aa

DfdA=02π0af(rcosθ,rsinθ)rdrdθ\iint_D f \, dA = \int_0^{2\pi} \int_0^a f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta

Triple Integrals

Ef(x,y,z)dV\iiint_E f(x, y, z) \, dV

Iterated Form

EfdV=abg1(x)g2(x)h1(x,y)h2(x,y)f(x,y,z)dzdydx\iiint_E f \, dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{h_1(x,y)}^{h_2(x,y)} f(x, y, z) \, dz \, dy \, dx

Applications

Volume: V=E1dVV = \iiint_E 1 \, dV

Mass: m=Eρ(x,y,z)dVm = \iiint_E \rho(x, y, z) \, dV

Center of mass: xˉ=1mExρdV\bar{x} = \frac{1}{m}\iiint_E x\rho \, dV, etc.


Cylindrical Coordinates

x=rcosθ,y=rsinθ,z=zx = r\cos\theta, \quad y = r\sin\theta, \quad z = z

Volume element: dV=rdzdrdθdV = r \, dz \, dr \, d\theta

Use when: Region has circular symmetry about the zz-axis.

Example: Cylinder

EfdV=02π0a0hf(rcosθ,rsinθ,z)rdzdrdθ\iiint_E f \, dV = \int_0^{2\pi} \int_0^a \int_0^h f(r\cos\theta, r\sin\theta, z) \, r \, dz \, dr \, d\theta

Spherical Coordinates

x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕx = \rho\sin\phi\cos\theta, \quad y = \rho\sin\phi\sin\theta, \quad z = \rho\cos\phi

where:

  • ρ\rho = distance from origin
  • ϕ\phi = angle from positive zz-axis (0ϕπ0 \leq \phi \leq \pi)
  • θ\theta = angle in xyxy-plane from positive xx-axis

Volume element: dV=ρ2sinϕdρdϕdθdV = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Use when: Region has spherical symmetry.

Example: Sphere of radius aa

EfdV=02π0π0afρ2sinϕdρdϕdθ\iiint_E f \, dV = \int_0^{2\pi} \int_0^{\pi} \int_0^a f \, \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Change of Variables (Jacobian)

For transformation x=g(u,v)x = g(u, v), y=h(u,v)y = h(u, v):

Rf(x,y)dxdy=Sf(g(u,v),h(u,v))(x,y)(u,v)dudv\iint_R f(x, y) \, dx \, dy = \iint_S f(g(u,v), h(u,v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du \, dv

Jacobian:

(x,y)(u,v)=xuxvyuyv\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}

Common Jacobians

CoordinatesJacobian
Polarrr
Cylindricalrr
Sphericalρ2sinϕ\rho^2 \sin\phi

Summary

Coordinate SystemdAdA or dVdV
Cartesian 2Ddxdydx \, dy
Polarrdrdθr \, dr \, d\theta
Cartesian 3Ddxdydzdx \, dy \, dz
Cylindricalrdzdrdθr \, dz \, dr \, d\theta
Sphericalρ2sinϕdρdϕdθ\rho^2 \sin\phi \, d\rho \, d\phi \, d\theta