1: Parametric Equations / Polar Coordinates
Alternative coordinate systems for describing curves and regions.
Parametric Equations
Instead of y=f(x), we describe a curve using a parameter t:
x=f(t),y=g(t),a≤t≤b
Why Parametric?
- Can describe curves that aren’t functions (e.g., circles)
- Natural for motion: t represents time
- Can trace the same curve in different directions/speeds
Examples
Circle of radius r:
x=rcost,y=rsint,0≤t≤2π
Ellipse with semi-axes a and b:
x=acost,y=bsint,0≤t≤2π
Cycloid (point on a rolling wheel):
x=r(t−sint),y=r(1−cost)
Calculus with Parametric Curves
Derivatives
If x=f(t) and y=g(t), the slope is:
dxdy=dx/dtdy/dt=f′(t)g′(t)
Second derivative:
dx2d2y=dxd(dxdy)=dx/dtdtd(dxdy)
Arc Length
The length of a parametric curve from t=a to t=b:
L=∫ab(dtdx)2+(dtdy)2dt
Area Under a Parametric Curve
A=∫abydx=∫abg(t)f′(t)dt
Polar Coordinates
A point is described by distance from origin and angle:
(r,θ)where r≥0,0≤θ<2π
Polar to Cartesian:
x=rcosθ,y=rsinθ
Cartesian to Polar:
r=x2+y2,tanθ=xy
Common Polar Curves
| Curve | Equation |
|---|
| Circle (radius a) | r=a |
| Circle through origin | r=acosθ or r=asinθ |
| Line through origin | θ=c |
| Cardioid | r=a(1+cosθ) |
| Rose (n petals) | r=acos(nθ) |
| Lemniscate | r2=a2cos(2θ) |
| Spiral | r=aθ |
Calculus in Polar Coordinates
Slope of a Polar Curve
Since x=rcosθ and y=rsinθ:
dxdy=dx/dθdy/dθ=dθdrcosθ−rsinθdθdrsinθ+rcosθ
Area in Polar Coordinates
Area enclosed by r=f(θ) from θ=α to θ=β:
A=21∫αβr2dθ=21∫αβ[f(θ)]2dθ
Intuition: A thin wedge has area 21r2dθ (like a pizza slice).
Arc Length in Polar Coordinates
L=∫αβr2+(dθdr)2dθ
Summary
| Concept | Cartesian | Parametric | Polar |
|---|
| Curve | y=f(x) | x=f(t),y=g(t) | r=f(θ) |
| Slope | dxdy | dx/dtdy/dt | r′cosθ−rsinθr′sinθ+rcosθ |
| Arc length | ∫1+(dy/dx)2dx | ∫(dx/dt)2+(dy/dt)2dt | ∫r2+(dr/dθ)2dθ |
| Area | ∫ydx | ∫g(t)f′(t)dt | 21∫r2dθ |