2: Vectors
Vectors are the fundamental language of multivariable calculus and physics.
Vector Basics
A vector has magnitude and direction. In R3:
v=⟨v1,v2,v3⟩=v1i+v2j+v3k
Magnitude
∣v∣=∥v∥=v12+v22+v32
Unit Vector
A vector with magnitude 1. To normalize:
v^=∣v∣v
Vector Operations
Addition: u+v=⟨u1+v1,u2+v2,u3+v3⟩
Scalar multiplication: cv=⟨cv1,cv2,cv3⟩
Dot Product
u⋅v=u1v1+u2v2+u3v3
Geometric Interpretation
u⋅v=∣u∣∣v∣cosθ
where θ is the angle between the vectors.
Properties
- u⋅v=0 iff u⊥v (orthogonal)
- u⋅u=∣u∣2
- Commutative: u⋅v=v⋅u
- Distributive: u⋅(v+w)=u⋅v+u⋅w
Projection
The projection of u onto v:
projvu=∣v∣2u⋅vv=v⋅vu⋅vv
Scalar component: compvu=∣v∣u⋅v
Cross Product
Only defined in R3:
u×v=iu1v1ju2v2ku3v3
=⟨u2v3−u3v2,u3v1−u1v3,u1v2−u2v1⟩
Geometric Interpretation
- u×v is perpendicular to both u and v
- Direction given by right-hand rule
- Magnitude: ∣u×v∣=∣u∣∣v∣sinθ
- Equals the area of the parallelogram formed by u and v
Properties
- u×v=0 iff u∥v (parallel)
- Anti-commutative: u×v=−(v×u)
- u×u=0
- Distributive: u×(v+w)=u×v+u×w
Triple Products
Scalar Triple Product
u⋅(v×w)=u1v1w1u2v2w2u3v3w3
Geometric meaning: Volume of the parallelepiped formed by u,v,w.
Vector Triple Product
u×(v×w)=(u⋅w)v−(u⋅v)w
(BAC-CAB rule)
Lines and Planes
Line in 3D
Through point P0=(x0,y0,z0) with direction v=⟨a,b,c⟩:
Vector form: r(t)=r0+tv
Parametric form:
x=x0+at,y=y0+bt,z=z0+ct
Symmetric form:
ax−x0=by−y0=cz−z0
Plane in 3D
Through point P0=(x0,y0,z0) with normal n=⟨a,b,c⟩:
Vector form: n⋅(r−r0)=0
Scalar form:
a(x−x0)+b(y−y0)+c(z−z0)=0
General form:
ax+by+cz=d
Distance from Point to Plane
Distance from point (x1,y1,z1) to plane ax+by+cz=d:
D=a2+b2+c2∣ax1+by1+cz1−d∣
Summary
| Operation | Formula | Result | Geometric Meaning |
|---|
| Dot product | u⋅v | Scalar | $ |
| Cross product | u×v | Vector | Normal to both, area of parallelogram |
| Scalar triple | u⋅(v×w) | Scalar | Volume of parallelepiped |