| |

2: Vectors

Vectors are the fundamental language of multivariable calculus and physics.


Vector Basics

A vector has magnitude and direction. In R3\mathbb{R}^3:

v=v1,v2,v3=v1i+v2j+v3k\mathbf{v} = \langle v_1, v_2, v_3 \rangle = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}

Magnitude

v=v=v12+v22+v32|\mathbf{v}| = \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}

Unit Vector

A vector with magnitude 1. To normalize:

v^=vv\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|}

Vector Operations

Addition: u+v=u1+v1,u2+v2,u3+v3\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle

Scalar multiplication: cv=cv1,cv2,cv3c\mathbf{v} = \langle cv_1, cv_2, cv_3 \rangle


Dot Product

uv=u1v1+u2v2+u3v3\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3

Geometric Interpretation

uv=uvcosθ\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta

where θ\theta is the angle between the vectors.

Properties

  • uv=0\mathbf{u} \cdot \mathbf{v} = 0 iff uv\mathbf{u} \perp \mathbf{v} (orthogonal)
  • uu=u2\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2
  • Commutative: uv=vu\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}
  • Distributive: u(v+w)=uv+uw\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}

Projection

The projection of u\mathbf{u} onto v\mathbf{v}:

projvu=uvv2v=uvvvv\text{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\mathbf{v}

Scalar component: compvu=uvv\text{comp}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}


Cross Product

Only defined in R3\mathbb{R}^3:

u×v=ijku1u2u3v1v2v3\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} =u2v3u3v2,  u3v1u1v3,  u1v2u2v1= \langle u_2v_3 - u_3v_2, \; u_3v_1 - u_1v_3, \; u_1v_2 - u_2v_1 \rangle

Geometric Interpretation

  • u×v\mathbf{u} \times \mathbf{v} is perpendicular to both u\mathbf{u} and v\mathbf{v}
  • Direction given by right-hand rule
  • Magnitude: u×v=uvsinθ|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta
  • Equals the area of the parallelogram formed by u\mathbf{u} and v\mathbf{v}

Properties

  • u×v=0\mathbf{u} \times \mathbf{v} = \mathbf{0} iff uv\mathbf{u} \parallel \mathbf{v} (parallel)
  • Anti-commutative: u×v=(v×u)\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})
  • u×u=0\mathbf{u} \times \mathbf{u} = \mathbf{0}
  • Distributive: u×(v+w)=u×v+u×w\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}

Triple Products

Scalar Triple Product

u(v×w)=u1u2u3v1v2v3w1w2w3\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}

Geometric meaning: Volume of the parallelepiped formed by u,v,w\mathbf{u}, \mathbf{v}, \mathbf{w}.

Vector Triple Product

u×(v×w)=(uw)v(uv)w\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}

(BAC-CAB rule)


Lines and Planes

Line in 3D

Through point P0=(x0,y0,z0)P_0 = (x_0, y_0, z_0) with direction v=a,b,c\mathbf{v} = \langle a, b, c \rangle:

Vector form: r(t)=r0+tv\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}

Parametric form:

x=x0+at,y=y0+bt,z=z0+ctx = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct

Symmetric form:

xx0a=yy0b=zz0c\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}

Plane in 3D

Through point P0=(x0,y0,z0)P_0 = (x_0, y_0, z_0) with normal n=a,b,c\mathbf{n} = \langle a, b, c \rangle:

Vector form: n(rr0)=0\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0

Scalar form:

a(xx0)+b(yy0)+c(zz0)=0a(x - x_0) + b(y - y_0) + c(z - z_0) = 0

General form:

ax+by+cz=dax + by + cz = d

Distance from Point to Plane

Distance from point (x1,y1,z1)(x_1, y_1, z_1) to plane ax+by+cz=dax + by + cz = d:

D=ax1+by1+cz1da2+b2+c2D = \frac{|ax_1 + by_1 + cz_1 - d|}{\sqrt{a^2 + b^2 + c^2}}

Summary

OperationFormulaResultGeometric Meaning
Dot productuv\mathbf{u} \cdot \mathbf{v}Scalar$
Cross productu×v\mathbf{u} \times \mathbf{v}VectorNormal to both, area of parallelogram
Scalar tripleu(v×w)\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})ScalarVolume of parallelepiped