3: Vector Functions and Space Curves
Vector-valued functions describe curves and motion in space.
Vector Functions
A vector function maps a scalar to a vector:
r(t)=⟨f(t),g(t),h(t)⟩=f(t)i+g(t)j+h(t)k
As t varies, r(t) traces out a space curve.
Examples
Helix:
r(t)=⟨cost,sint,t⟩
Line:
r(t)=r0+tv
Circle in the xy-plane:
r(t)=⟨rcost,rsint,0⟩
Calculus of Vector Functions
Limits and Continuity
Take limits component-wise:
t→alimr(t)=⟨t→alimf(t),t→alimg(t),t→alimh(t)⟩
Derivatives
r′(t)=⟨f′(t),g′(t),h′(t)⟩
Geometric meaning: r′(t) is the tangent vector to the curve at r(t).
Unit tangent vector:
T(t)=∣r′(t)∣r′(t)
Differentiation Rules
- (cr)′=cr′
- (u+v)′=u′+v′
- (fr)′=f′r+fr′ (scalar times vector)
- (u⋅v)′=u′⋅v+u⋅v′
- (u×v)′=u′×v+u×v′
Integrals
∫abr(t)dt=⟨∫abf(t)dt,∫abg(t)dt,∫abh(t)dt⟩
Motion in Space
If r(t) is the position of a particle:
| Quantity | Formula |
|---|
| Position | r(t) |
| Velocity | v(t)=r′(t) |
| Speed | $ |
| Acceleration | a(t)=v′(t)=r′′(t) |
Arc Length
Length of curve from t=a to t=b:
L=∫ab∣r′(t)∣dt=∫ab(x′)2+(y′)2+(z′)2dt
Arc Length Parameter
The arc length function:
s(t)=∫at∣r′(u)∣du
Note: dtds=∣r′(t)∣
Curvature
Curvature κ measures how fast the curve turns:
κ=dsdT=∣r′(t)∣∣T′(t)∣=∣r′(t)∣3∣r′(t)×r′′(t)∣
Radius of Curvature
ρ=κ1
The radius of the best-fitting circle (osculating circle) at that point.
Curvature for y=f(x)
κ=[1+(f′(x))2]3/2∣f′′(x)∣
The TNB Frame (Frenet-Serret Frame)
Three mutually perpendicular unit vectors that move along the curve:
Unit Tangent Vector
T=∣r′∣r′
Points in the direction of motion.
Principal Normal Vector
N=∣T′∣T′
Points toward the center of curvature (the direction the curve is turning).
Binormal Vector
B=T×N
Perpendicular to the osculating plane.
T′=κ∣r′∣N
N′=−κ∣r′∣T+τ∣r′∣B
B′=−τ∣r′∣N
where τ is the torsion (measures how the curve twists out of the osculating plane).
Tangential and Normal Components of Acceleration
Acceleration can be decomposed:
a=aTT+aNN
where:
Tangential component (changes speed):
aT=dtd∣v∣=∣v∣v⋅a
Normal component (changes direction):
aN=κ∣v∣2=∣v∣∣v×a∣
Summary
| Concept | Formula |
|---|
| Tangent vector | $\mathbf{T} = \frac{\mathbf{r}’}{ |
| Arc length | $L = \int |
| Curvature | $\kappa = \frac{ |
| Normal vector | $\mathbf{N} = \frac{\mathbf{T}’}{ |
| Binormal vector | B=T×N |
| Tangential acceleration | $a_T = \frac{\mathbf{v} \cdot \mathbf{a}}{ |
| Normal acceleration | $a_N = \frac{ |