| |

3: Vector Functions and Space Curves

Vector-valued functions describe curves and motion in space.


Vector Functions

A vector function maps a scalar to a vector:

r(t)=f(t),g(t),h(t)=f(t)i+g(t)j+h(t)k\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}

As tt varies, r(t)\mathbf{r}(t) traces out a space curve.

Examples

Helix:

r(t)=cost,sint,t\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle

Line:

r(t)=r0+tv\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}

Circle in the xyxy-plane:

r(t)=rcost,rsint,0\mathbf{r}(t) = \langle r\cos t, r\sin t, 0 \rangle

Calculus of Vector Functions

Limits and Continuity

Take limits component-wise:

limtar(t)=limtaf(t),limtag(t),limtah(t)\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle

Derivatives

r(t)=f(t),g(t),h(t)\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle

Geometric meaning: r(t)\mathbf{r}'(t) is the tangent vector to the curve at r(t)\mathbf{r}(t).

Unit tangent vector:

T(t)=r(t)r(t)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}

Differentiation Rules

  • (cr)=cr(c\mathbf{r})' = c\mathbf{r}'
  • (u+v)=u+v(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'
  • (fr)=fr+fr(f\mathbf{r})' = f'\mathbf{r} + f\mathbf{r}' (scalar times vector)
  • (uv)=uv+uv(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'
  • (u×v)=u×v+u×v(\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'

Integrals

abr(t)dt=abf(t)dt,abg(t)dt,abh(t)dt\int_a^b \mathbf{r}(t) \, dt = \left\langle \int_a^b f(t)\,dt, \int_a^b g(t)\,dt, \int_a^b h(t)\,dt \right\rangle

Motion in Space

If r(t)\mathbf{r}(t) is the position of a particle:

QuantityFormula
Positionr(t)\mathbf{r}(t)
Velocityv(t)=r(t)\mathbf{v}(t) = \mathbf{r}'(t)
Speed$
Accelerationa(t)=v(t)=r(t)\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)

Arc Length

Length of curve from t=at = a to t=bt = b:

L=abr(t)dt=ab(x)2+(y)2+(z)2dtL = \int_a^b |\mathbf{r}'(t)| \, dt = \int_a^b \sqrt{(x')^2 + (y')^2 + (z')^2} \, dt

Arc Length Parameter

The arc length function:

s(t)=atr(u)dus(t) = \int_a^t |\mathbf{r}'(u)| \, du

Note: dsdt=r(t)\frac{ds}{dt} = |\mathbf{r}'(t)|


Curvature

Curvature κ\kappa measures how fast the curve turns:

κ=dTds=T(t)r(t)=r(t)×r(t)r(t)3\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}

Radius of Curvature

ρ=1κ\rho = \frac{1}{\kappa}

The radius of the best-fitting circle (osculating circle) at that point.

Curvature for y=f(x)y = f(x)

κ=f(x)[1+(f(x))2]3/2\kappa = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}

The TNB Frame (Frenet-Serret Frame)

Three mutually perpendicular unit vectors that move along the curve:

Unit Tangent Vector

T=rr\mathbf{T} = \frac{\mathbf{r}'}{|\mathbf{r}'|}

Points in the direction of motion.

Principal Normal Vector

N=TT\mathbf{N} = \frac{\mathbf{T}'}{|\mathbf{T}'|}

Points toward the center of curvature (the direction the curve is turning).

Binormal Vector

B=T×N\mathbf{B} = \mathbf{T} \times \mathbf{N}

Perpendicular to the osculating plane.

Frenet-Serret Formulas

T=κrN\mathbf{T}' = \kappa |\mathbf{r}'| \mathbf{N} N=κrT+τrB\mathbf{N}' = -\kappa |\mathbf{r}'| \mathbf{T} + \tau |\mathbf{r}'| \mathbf{B} B=τrN\mathbf{B}' = -\tau |\mathbf{r}'| \mathbf{N}

where τ\tau is the torsion (measures how the curve twists out of the osculating plane).


Tangential and Normal Components of Acceleration

Acceleration can be decomposed:

a=aTT+aNN\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}

where:

Tangential component (changes speed):

aT=ddtv=vava_T = \frac{d}{dt}|\mathbf{v}| = \frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}|}

Normal component (changes direction):

aN=κv2=v×ava_N = \kappa |\mathbf{v}|^2 = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|}

Summary

ConceptFormula
Tangent vector$\mathbf{T} = \frac{\mathbf{r}’}{
Arc length$L = \int
Curvature$\kappa = \frac{
Normal vector$\mathbf{N} = \frac{\mathbf{T}’}{
Binormal vectorB=T×N\mathbf{B} = \mathbf{T} \times \mathbf{N}
Tangential acceleration$a_T = \frac{\mathbf{v} \cdot \mathbf{a}}{
Normal acceleration$a_N = \frac{