| |

7: Surface Integrals

Integrating functions over surfaces in 3D.


Parametric Surfaces

A surface SS can be parametrized by:

r(u,v)=x(u,v),y(u,v),z(u,v)\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle

where (u,v)(u, v) varies over some region DD in the uvuv-plane.

Examples

Sphere of radius aa:

r(ϕ,θ)=asinϕcosθ,asinϕsinθ,acosϕ\mathbf{r}(\phi, \theta) = \langle a\sin\phi\cos\theta, a\sin\phi\sin\theta, a\cos\phi \rangle

Cylinder of radius rr:

r(θ,z)=rcosθ,rsinθ,z\mathbf{r}(\theta, z) = \langle r\cos\theta, r\sin\theta, z \rangle

Graph z=f(x,y)z = f(x, y):

r(x,y)=x,y,f(x,y)\mathbf{r}(x, y) = \langle x, y, f(x, y) \rangle

Tangent Planes and Normal Vectors

The tangent vectors to the surface:

ru=ru,rv=rv\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v}

The normal vector:

n=ru×rv\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v

This is perpendicular to the surface at each point.

For a Graph z=f(x,y)z = f(x, y)

n=fx,fy,1\mathbf{n} = \langle -f_x, -f_y, 1 \rangle

Surface Area

A=Dru×rvdAA = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA

For a Graph z=f(x,y)z = f(x, y)

A=D1+fx2+fy2dAA = \iint_D \sqrt{1 + f_x^2 + f_y^2} \, dA

Surface Integrals of Scalar Functions

SfdS=Df(r(u,v))ru×rvdA\iint_S f \, dS = \iint_D f(\mathbf{r}(u, v)) |\mathbf{r}_u \times \mathbf{r}_v| \, dA

For a Graph

SfdS=Df(x,y,f(x,y))1+fx2+fy2dA\iint_S f \, dS = \iint_D f(x, y, f(x,y)) \sqrt{1 + f_x^2 + f_y^2} \, dA

Applications

  • Surface area: S1dS\iint_S 1 \, dS
  • Mass of a shell: SρdS\iint_S \rho \, dS
  • Center of mass: xˉ=1mSxρdS\bar{x} = \frac{1}{m}\iint_S x\rho \, dS

Oriented Surfaces

An oriented surface has a chosen “positive” side (direction of normal).

  • Closed surface: Convention is outward normal
  • Surface with boundary: Use right-hand rule with boundary curve

Surface Integrals of Vector Fields (Flux)

The flux of F\mathbf{F} through surface SS:

SFdS=SFndS\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S \mathbf{F} \cdot \mathbf{n} \, dS

Computation

SFdS=DF(r(u,v))(ru×rv)dA\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(\mathbf{r}(u,v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA

For a Graph z=f(x,y)z = f(x, y) with Upward Normal

SFdS=DFfx,fy,1dA\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F} \cdot \langle -f_x, -f_y, 1 \rangle \, dA

Or if F=P,Q,R\mathbf{F} = \langle P, Q, R \rangle:

SFdS=D(PfxQfy+R)dA\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D (-Pf_x - Qf_y + R) \, dA

Physical Interpretation of Flux

If F\mathbf{F} is a velocity field of a fluid:

Flux=SFdS=volume of fluid passing through S per unit time\text{Flux} = \iint_S \mathbf{F} \cdot d\mathbf{S} = \text{volume of fluid passing through } S \text{ per unit time}
  • Positive flux: flow in direction of normal
  • Negative flux: flow opposite to normal
  • Zero flux: flow parallel to surface

Computing Flux Through Common Surfaces

Sphere of Radius aa (Outward Normal)

n=rr=x,y,za\mathbf{n} = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\langle x, y, z \rangle}{a} dS=a2sinϕdϕdθdS = a^2 \sin\phi \, d\phi \, d\theta

Cylinder (Outward Normal)

n=x,y,0r\mathbf{n} = \frac{\langle x, y, 0 \rangle}{r}

Plane

Normal is constant, dS=dAdS = dA.


Summary

ConceptFormula
Normal vectorn=ru×rv\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v
Surface area$\iint_D
Scalar surface integral$\iint_S f , dS = \iint_D f
FluxSFdS=DF(ru×rv)dA\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, dA
Graph z=f(x,y)z=f(x,y)dS=1+fx2+fy2dAdS = \sqrt{1 + f_x^2 + f_y^2} \, dA